EC75 Series

Engineering Products Frequency Converters Sample Handbook

WISDRI (WUHAN) AUTOMATION CO.,LTD.

1. Company Profile

WISDRI (WUHAN) AUTOMATION CO.,LTD., established in 2004, is a key high-tech enterprise under the National Torch Plan. At present, it has won one first prize of the National Science and Technology Progress Award and six international advanced and above appraisal achievements.

The company has the industry leading R&D and manufacturing capabilities of frequency converters, big data software and other products, and has accumulated rich experience in the whole process of automation services based on products. It can provide system solutions in metallurgy, petrochemical, non-ferrous metal, coal, lifting, military and other fields, and will continue to inject strong power into high-quality development, make factories more intelligent, and make cities more intelligent.

2. Overview of EC7 Series Frequency Converters

The design purpose of E-CONVERT is to provide users with high-performance, high-precision, and highly reliable AC transmission products with excellent cost-effectiveness. The E-CONVERT 75 (referred to as EC75) series products are the latest intelligent modular engineering drive products launched by MCC Southern (Wuhan) Automation Co., Ltd., which integrate V/F and vector control. Its superior steady-state and dynamic performance are prerequisites for meeting various engineering applications.

The freely integrated functional blocks within EC75 enable logic, computation, and simple process control, making the frequency conversion system programmable. The data transmission between functional blocks and the setting of control parameters are achieved through parameter interconnection technology, and users can freely construct and match transmission systems according to process requirements.

3. The EC75 Series Products include Frequency Converters,

Engineering type frequency	Engineering inverter	Basic rectifier
converter		
EC750	EC751	EC752
Feedback rectifier	Active rectifier	
EC753	EC754	

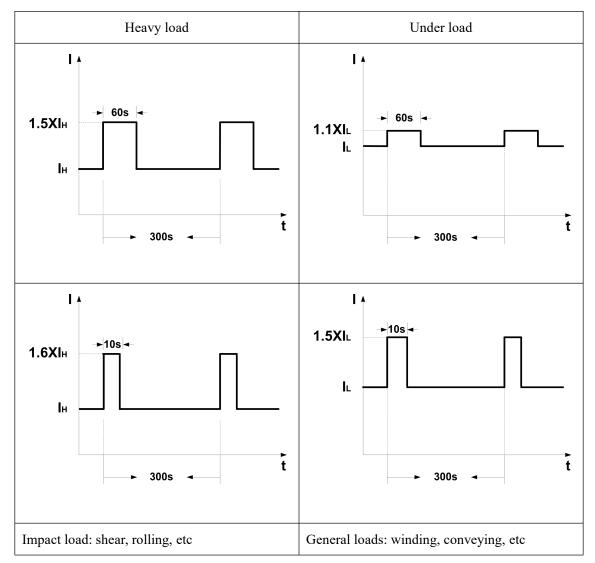
Rectifiers, Inverters, and Auxiliary Apare Parts:

The Naming convention of EC75 series products is as follows:

1	2	3	4	5	6	7	8	9	10	11	12	13	
Е	C	7	5	0	4	B	Χ	Χ	1	9	Α	6	+ Option code

【1-2】 pi	[1-2] product name		voltage	【10-13】 Rated	l output current
EC	E-CONVERT	4	380V-480V	06A1	6.1A
【3-5】]	Product Series	6	500V-690V	19A6	19.6A
750	Engineering type	【7】	size	033A	33A
	frequency				
	converter				
751	Engineering	A-J	Size specifications A-J	1500	1500A
	inverter				
752	Basic rectifier	【8-9】	reserved		
753	Feedback rectifier	XX	Reserve 2 digits		
754	Active rectifier	N	ote: Please refer to the ord	lering data param	eter table for details

3.1 EC750 Engineering Type Frequency Converter


EC750 is an engineering type frequency converter in the E-CONVERT series of products, with a structure that integrates a rectifier unit and an inverter unit. Especially suitable for single machine control situations with high requirements for control accuracy.

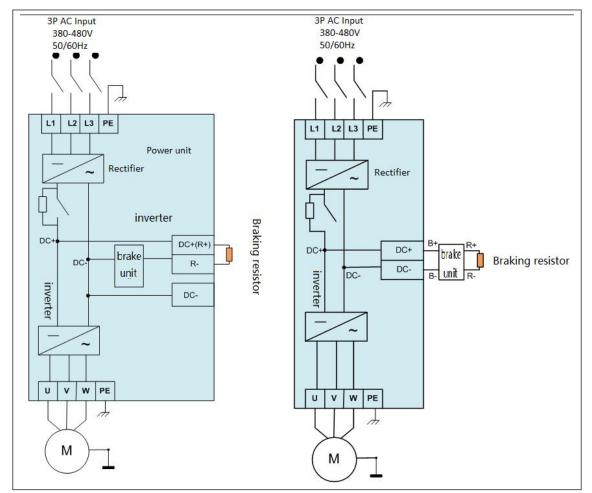
	Input Voltage	3AC 380V(-15%)-480V (+10%)	input frequency	50Hz/60Hz, ±5%		
Rating	Output voltage	Corresponding input voltage	efficiency	≥96%		
	Frequency	V/f control: 0-400Hz Vector control: 0-300Hz	Carrier Frequency	1kHz-16kHz		
	Speed range	1:100 (PG free flux vector control with PG)	or control), 1	:1000(Magnetic flux vector		
	Starting torque	0.5Hz:200% (PG free flu flux vector control with F		rol), 0Hz:200% (Magnetic		
Control characteristics	Overload capacity	heavy load : Reference load current IH150% operates for 60 seconds , 160%Run for 10 seconds, Cycle 300s underloading : Reference load current IL110% operation for 60 seconds , 150% operation for 10 seconds, Cycle 300s				
	Operating environmen t temperature	0-40°C (4Use with reduced capacity above 0 °C)	Storage temperatu re	-40°C~+70°C		
Environment	Relative humidity	5%~95%, No condensation	Altitude	Derating above 2000 meters		
	Safety regulations	CE	Forced air cooling			
	EMC specificatio ns	Complies with IEC61800-3C3 level				

Note: The carrier frequency range is related to the device power, as detailed in the carrier frequency reduction section

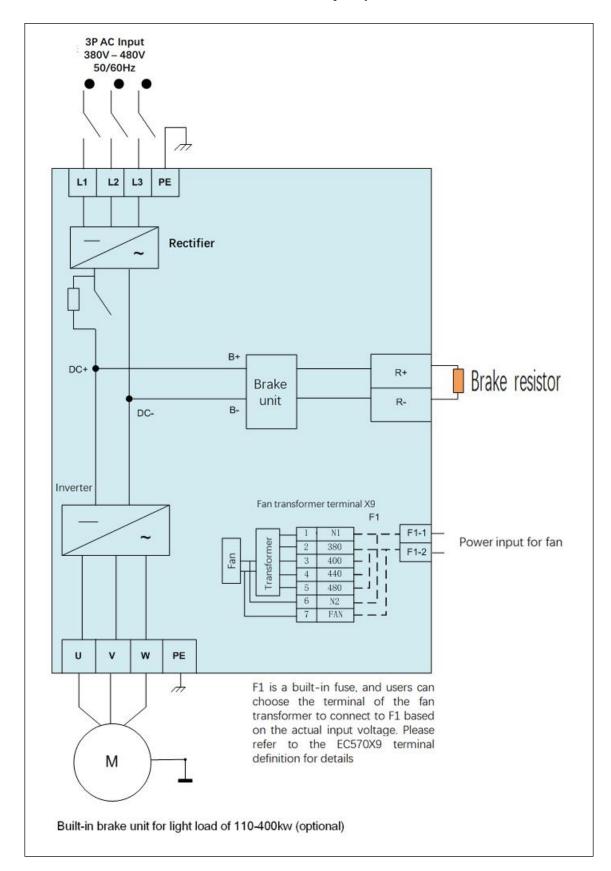
3.1.1 Overload Characteristics

Note: IH: Heavy load basic load current, IL: Light load basic load current, IH<IL.

3.1.2 Ordering Data


			Underl	oading	Heav	y load	size
Product order number	Input current (A)	Output current(A)	power (kW)	IL(A)	power (kW)	IH(A)	(width * height * depth, mm)
EC750-4AXX-06A 1	6.3	6.1	2.2	5.9	1.5	4.1	
EC750-4AXX-07A 9	8.2	7.9	3	7.7	2.2	5.9	20*465*240
EC750-4AXX-10A 5	10.8	10.5	4	10.2	3	7.7	82*465*340
EC750-4AXX-13A	14.2	13.6	5.5	13.2	4	10.2	
6							

EC750 4DVV 104							
EC750-4BXX-19A 6	20.4	19.6	7.5	19	5.5	13.2	105*465*385
EC750-4BXX-26A 8	28	26.8	11	26	7.5	19	105 405 585
EC750-4CXX-033 A	34	33	15	31	11	26	125*4(5*205
EC750-4CXX-39A 2	40	39.2	18.5	37	15	31	135*465*385
EC750-4DXX-46A 4	48	46.4	22	45	18.5	37	
EC750-4DXX-61A 9	64	61.9	30	60	22	45	208*465*402
EC750-4DXX-77A 3	80	77.3	37	74	30	60	
EC750-4EXX-92A 8	96	92.8	45	90	37	74	270*600*380
EC750-4FXX-113 A	117	113	55	110	45	90	
EC750-4FXX-149 A	154	149	75	145	55	110	320*702*380
EC750-4FXX-184 A	189	184	90	178	75	145	
EC750-4GXX-210 A	223	210	110	205	90	178	320*1370*380
EC750-4GXX-260 A	277	260	132	250	110	233	520-1570-580
EC750-4HXX-310 A	330	310	160	302	132	277	
EC750-4HXX-380 A	404	380	200	370	160	340	325*1530*542
EC750-4HXX-490 A	521	490	250	477	200	438	
EC750-4IXX-605A	644	605	315	590	250	460	502*1510*547
EC750-4IXX-745A	793	745	400	725	315	570	523*1519*547


Guideline

The EC750 is an independent drive from AC to DC to AC, and needs to be selected based on the actual load current and considering the overload capacity of the EC750. When applied in heavy-duty situations, IH is the long-term allowable working current, and its overload characteristic is: 1.5 × IH overload for 60s, 1.6 × IH overload for 10 seconds, with a cycle of 300 seconds. When applied in light load situations, IL is the long-term allowable working current, and its overload characteristic is: 1.1 × IL overload for 60s, 1.5 × IL overload for 10 seconds, with a cycle of 300 seconds. When EC750 is installed in an altitude higher than 2000m or in a high temperature environment or with an increase in carrier frequency, it needs to be derated for use. The current derating and voltage derating curves can be found in the "Operating Environment" section;

- The main components on the grid side include fuses, contactors, circuit breakers, incoming reactors, etc. It is recommended to configure fuses with semiconductor protection capabilities to effectively protect the frequency converter from damage in the event of short circuits or overcurrent. It is recommended to configure a 2% incoming reactor, which can effectively suppress harmonic currents and limit current surges caused by grid side overvoltage (such as compensation equipment or grounding or operation overvoltage);
- > It is recommended to configure a 1% output reactor at 100m;
- Please refer to the "Control Unit and External Options" section for the options of the braking unit and other options.

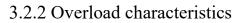
3.1.3 Power Unit Wiring Diagram

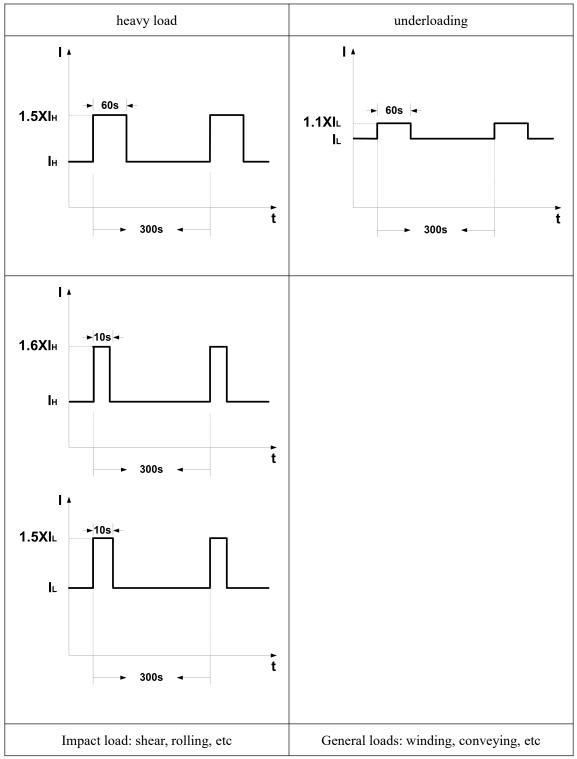
[Terminal Block×9]

Fan transformer 1	N1	Transformer primary input ground selection
-------------------	----	--

terminal×9	2	380	Transformer input 380V selection
	3	400	Transformer input 400V selection
	4	440	Transformer input 440V selection
	5	480	Transformer input 480V selection
	6	N2	Transformer secondary input ground selection (for
	0	INZ	220V direct supply)
	7	EAN	Transformer secondary input 220V selection (when
		FAN	220V is directly supplied)

Note: The incoming terminal of the fan power supply is connected from the fuse F1 terminal, and the internal default connection method is 380V power supply. If there is a change in the fan power supply voltage, it is necessary to adjust the terminal wiring of the fuse F1. Please refer to the user manual or user manual for details.


3.2 EC751 Engineering Inverter

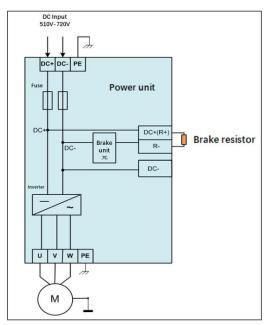

EC751 is an engineering inverter in the E-CONVERT series products, which is combined with a rectifier unit to form a DC bus transmission system. Multiple inverters are connected to the same DC bus section. Especially suitable for multi machine collaborative control with complex processes, such as steel, paper, and other fields.

	INPUT VOLTAGE	DC510V-720V	efficiency	≥96%		
RATING	Output voltage	0.67×INPUT VOLTAGE	Carrier Frequency	1kHz-16kHz		
	Frequency	V/f control: 0-400H	z, Vector con	trol: 0-300Hz		
	speed range	1:100 (PG free flux v control with PG)	vector control)	, 1:1000(Magnetic flux vector		
control	starting torque	0.5Hz:200% (PG free flux vector control w		ontrol), 0Hz:200% (Magnetic		
characteristics	Overload capacity	heavy load: Reference load current $I_H 150\%$ run60s , 160% run10s, cycle300s underloading: Reference load current $I_L 110\%$ run60s , 150% run10s, cycle300s				
	Operating environment temperature	0-40 °C (for use above 40 °C, the capacity needs to be reduced)	storage temperatu re	-40°C~+70°C		
environment	relative humidity	5%~95%, No condensation altitude Derating above 2000 me				
	Safety regulations	CE	Forced air cooling			
	EMC specifications	Complies with IEC 6	51800-3 C3 lev	el		

3.2.1 Basic characteristics

Note: The carrier frequency range is related to the device power, as detailed in the carrier frequency reduction section.

Note: IH: Heavy load basic load current, IL: Light load basic load current, IH<IL.

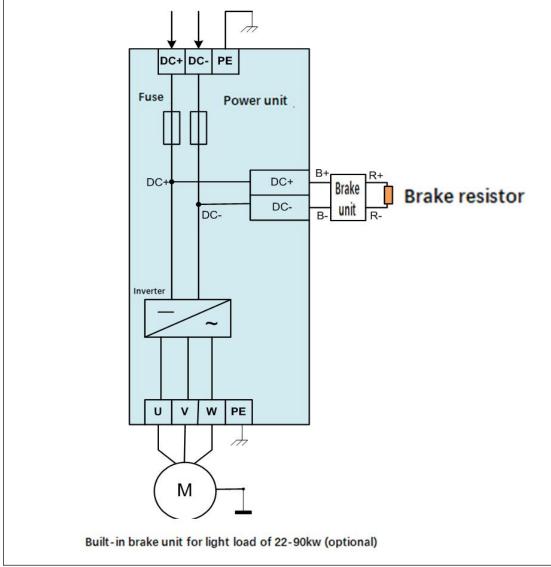

3.2.3 Ordering data

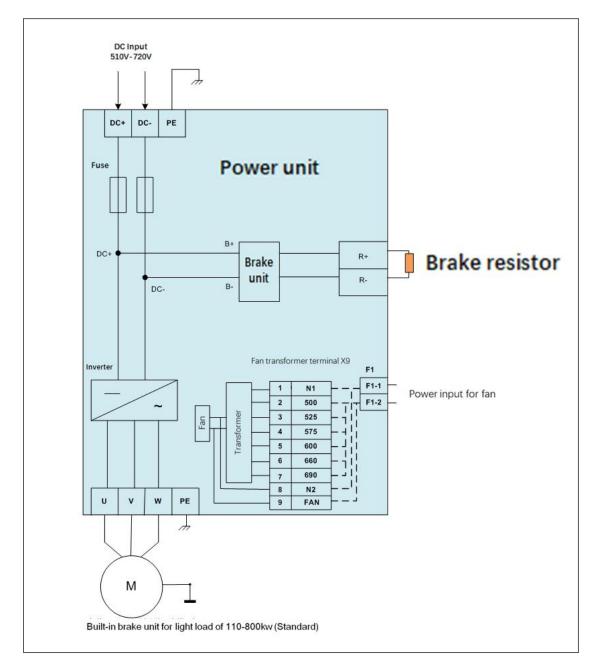
	Output	under	loading	heavy	load	size
Product order number	current (A)	power(k W)	I _L (A)	power(k W)	I _H (A)	(width * height * depth, mm)
EC751-4AXX-07A 9	7.9	3	7.7	2.2	5.9	
EC751-4AXX-10A 5	10.5	4	10.2	3	7.7	82*465*340
EC751-4AXX-13A 6	13.6	5.5	13.2	4	10.2	
EC751-4BXX-19A 6	19.6	7.5	19	5.5	13.2	105*4(5*295
EC751-4BXX-26A 8	26.8	11	26	7.5	19	- 105*465*385
EC751-4CXX-033 A	33	15	31	11	26	125*475*295
EC751-4CXX-39A 2	39.2	18.5	37	15	31	- 135*475*385
EC751-4DXX-46A 4	46.4	22	45	18.5	37	
EC751-4DXX-61A 9	61.9	30	60	22	45	208*465*402
EC751-4DXX-77A 3	77.3	37	74	30	60	
EC751-4EXX-92A 8	92.8	45	90	37	74	270*600*380
EC751-4FXX-113 A	113	55	110	45	90	
EC751-4FXX-149 A	149	75	145	55	110	320*702*380
EC751-4FXX-184 A	184	90	178	75	145	
EC751-4GXX-210 A	210	110	205	90	178	220*1270*280
EC751-4GXX-260 A	260	132	250	110	233	320*1370*380
EC751-4HXX-310 A	310	160	302	132	277	
EC751-4HXX-380 A	380	200	370	160	340	325*1530*542
EC751-4HXX-490 A	490	250	477	200	438	

EC751-4IXX-605A	605	315	590	250	460	523*1519*547
EC751-4IXX-745A	745	400	725	315	570	525.1319.347
EC751-4JXX-840	0.40	450	820	400	700	
А	840	450	820	400	700	
EC751-4JXX-985	985	5(0	0(0	450	960	
А	985	560	960	450	860	750*1540*545
EC751-4JXX-1260	1260	710	1230	560	1127	
EC751-4JXX-1405	1405	800	1370	710	1257	

Guideline

- EC751 is an inverter unit that needs to be selected based on the actual load current and considering the overload capacity of EC751. When applied in heavy-duty situations, to allow long-term working current, its overload characteristics are: overload for 60s, overload for 10s, and cycle for 300s. When applied in light load situations, to allow long-term working current, its overload for 60s, overload for 10s, and cycle for 300s. When applied in light load situations, to allow long-term working current, its overload characteristics are: overload for 60s, overload for 10s, and cycle for 300s. When EC751 is installed at an altitude above 2000m or in a high temperature environment or with an increase in carrier frequency, a lineup is required. Please refer to the "Operating Environment" section for its current lineup and voltage reduction curve.
- The DC side of EC751 is equipped with semiconductor protection and fuses, which can effectively protect the frequency converter from damage in case of short circuit or overcurrent.
- The output reactor is used to compensate for the capacitive charging current of long cables. When the cable length exceeds 100m, it is recommended to configure a 1% output reactor.
- Please refer to the "Control Unit and External Selection" section for the selection of brake units and other selected accessories

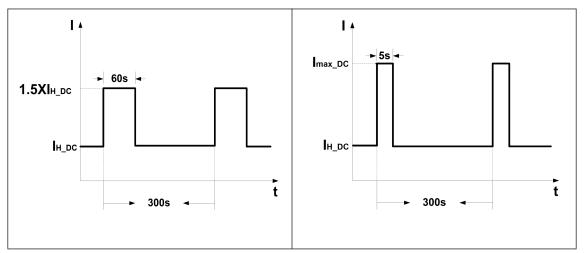



3.2.4 Power Unit Wiring Diagram

Light load 3-18.5kW brake unit built-in (standard)

DC Input 510V-720V

EC75 Series Products Frequency Converters


3.3 EC752 Basic rectifier

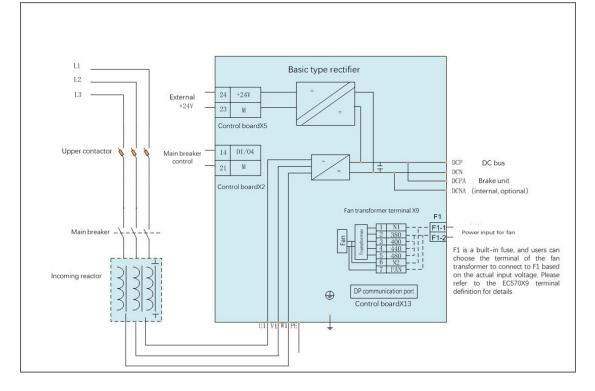
EC752 is a basic rectifier unit in the E-CONVERT series of products. It is a device that provides DC power to the EC751 inverter, and can be equipped with brake units and resistors to achieve fast braking and other functions.

3.3.1 Basic characteristics

	INPUT VOLTAGE	3AC 380V (-15%) ~480V (+10%)	efficiency	≥96%		
RATING	Output voltage	one point three two × Input voltage (full load)	Braking method	Built-in options		
	Overload capacity	Operating for 60 seconds with a reference load current of 150% and a cycle of 300 seconds Maximum bus current operation for 5 seconds, cycle for 300 seconds				
	Operating environment temperature	0-40 °C (use with reduced capacity below 40 °C)	storage temperatu re	-40°C~+70°C		
environment	relative humidity	5%~95%, No condensation	altitude	Derating above 2000 meters		
	Safety regulations	CE	Cooling method	Forced air cooling		
	EMC specifications	Complies with IEC 61800-3 C3 level				

3.3.2 Overload Characteristics

Note:<1>: Basic load current,: Maximum bus current.


3.3.3 Ordering Data

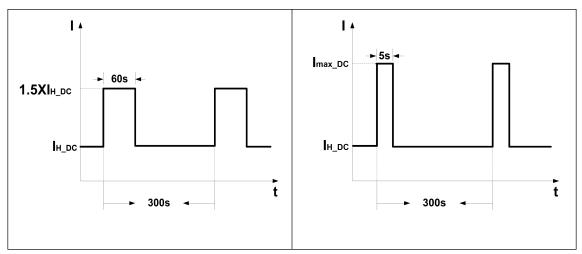
Product		power (kW)	input current(A)	Maximum input current (A)	Output rated current (A)	Basic load current (A)	Maximu m busbar current (A)	size (width * height * depth, mm)
EC752-41	D-420A	200	365	547	420	328	630	306*1161*365

EC752-4D-530A	250	460	690	530	413	795	
EC752-4D-820A	400	710	1065	820	640	1230	
EC752-4E-1200	560	1010	1515	1200	936	1800	306*1650*542
EC752-4E-1500	710	1265	1897	1500	1170	2250	300.1030.342

Guideline

- EC752 is a basic rectifier unit that needs to be selected based on the actual load current and considering the overload capacity of EC752. For long-term allowable working current, its overload characteristic is: overload for 60s, with a cycle of 300s; When the maximum bus current is reached (as shown in the table above), it can operate for 5 seconds with a cycle of 300 seconds. When EC752 is installed in an altitude above 2000m or in a high temperature environment, it needs to be derated for use. The current derating and voltage derating curves can be found in the "Operating Environment" section.
- The main components on the grid side include fuses, contactors, circuit breakers, incoming reactors, etc. It is recommended to configure fuses with semiconductor protection capabilities. It can effectively protect the rectifier from damage in case of short circuit or overcurrent. It is recommended to configure a 2% incoming reactor, which can effectively suppress harmonic currents and limit current surges caused by grid side overvoltage (such as compensation equipment or grounding or operation overvoltage).
- EC752 charges the DC side capacitor by controlling the trigger angle of the thyristor, eliminating the need for designing a pre charging circuit, saving costs and simplifying the system.
- Please refer to the "Control Unit and External Options" section for the selection of brake units and other options.

3.3.4 Power Unit Wiring Diagram


3.4 EC753 Feedback Rectifier

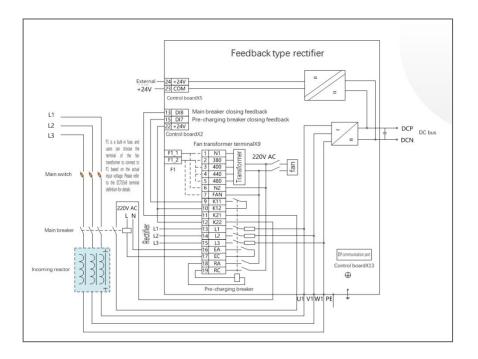
EC753 is a feedback rectifier unit in the E-CONVERT series of products. It is a device that provides DC power to the EC751 inverter, with 100% energy feedback function and no need to configure braking components.

	INPUT VOLTAGE	3AC 380V (-15%) ~480V (+10%)	efficiency	≥98.5%		
RATING	Output voltage	one point three zero × Input voltage (full load) one point three two × Input voltage (light load)	Fundamen tal power factor	>0.96		
	Overload capacity	Operating for 60 seconds with a reference load current of 150% and a cycle of 300 seconds Maximum bus current operation for 5 seconds, cycle for 300 seconds				
	Operating environment temperature	0-40 °C (use with reduced capacity below 40 °C)	storage temperatu re	-40°C~+70°C		
environment	relative humidity	5%~95%, No condensation	altitude	Derating above 2000 meters		
	Safety regulations	CE	Cooling method	Forced air cooling		
	EMC specifications	Complies with IEC 61800-3 C3 level				

3.4.1 Basic characteristics

3.4.2 Overload characteristics

Note:<1>: Basic load current,: Maximum bus current.


Product order number	power kW	Rated output Incomi ng current A (AC)	Maxim um input current A(AC)	Output rated current A(DC)	Basic load current A(DC)	Maximum busbar currentA(D C)	size (width * height * depth, mm)
EC753-4J-1050	500	883	1324	1050	934	1575	
EC753-4J-1300	630	1093	1639	1300	1157	1950	750*1540*545
EC753-4J-1700	800	1430	2145	1700	1513	2550	

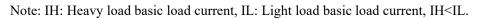
3.4.3 Ordering Data

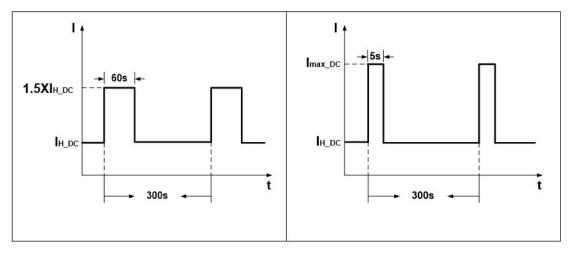
Guideline

- EC753 is a feedback rectifier unit that needs to be selected based on the actual load current and considering the overload capacity of EC753. For long-term allowable working current, its overload characteristic is: overload for 60s, with a cycle of 300s; When the maximum bus current is reached (as shown in the table above), it can operate for 5 seconds with a cycle of 300 seconds. When EC753 is installed in an altitude above 2000m or in a high temperature environment, it needs to be derated for use. The current derating and voltage derating curves can be found in the "Operating Environment" section.
- The main components on the grid side include fuses, contactors, circuit breakers, incoming reactors, etc. It is recommended to configure fuses with semiconductor protection capabilities. It can effectively protect the rectifier from damage in case of short circuit or overcurrent. It is recommended to configure a 2% incoming reactor, which can effectively suppress harmonic currents and limit current surges caused by grid side overvoltage (such as compensation equipment or grounding or operation overvoltage).
- > The EC753 has a built-in pre charging circuit that can charge the DC side capacitor without the need for a separate pre charging circuit, saving costs and simplifying the system.

3.4.4 Power Unit Wiring Diagram

3.5 EC754 Active Rectifier


The EC754 active rectifier is a new generation of high-frequency PWM rectifiers in the E-CONVERT series of products. It generates an adjustable DC bus voltage and can provide DC power to the EC751 inverter. With 100% energy feedback function, there is no need to configure braking components. The EC754 active rectifier is composed of a combination of filtering unit and rectification unit.


The operation of the EC754 active rectifier must use a matching filtering unit.

	INPUT VOLTAGE	3AC 380V-10 % (-15% < 1 min)∼3AC efficiency 480V+10%		≥97.5%	
RATING	Output voltage	The DC bus voltage can be adjusted, and the set value can be independent of the input voltage. The factory set value of DC bus voltage is 625V.	Fundamental power factor	1 (Can be changed by setting the reactive current)	
	Overload capacity	Operating for 60 seconds with a reference load current of 150% and a cycle of 300 seconds Maximum bus current operation for 5 seconds, cycle for 300 seconds			
	Current harmonics	Under rated load, grid side current harmonics $\leq 5\%$			
	Operating environment temperature	-10°C~+55°C (For use above 40 °C, the capacity needs to be reduced)	storage temperature	-40°C~+70°C	
environment	relative humidity	5%~95%, No condensation	altitude	Derating above 1000 meters	
	Safety regulations	CE	Cooling method	Forced air cooling	
	EMC specifications	Complies with IEC 61800-	3 C3 level		

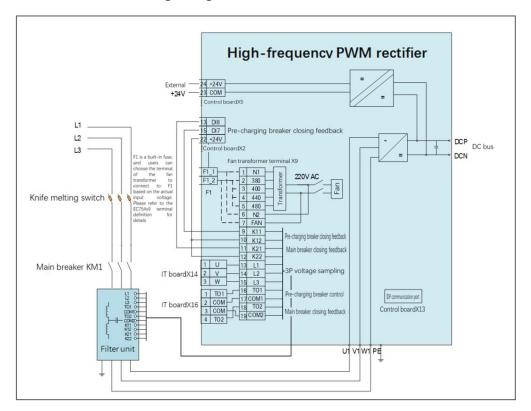
3.5.1 Basic Characteristics

3.5.2 Overload Characteristics

3.5.3 Ordering Data

			Tabl	e l			
Rectifier unit Order number	Rated output power (KW)	output currentI _N DC A (DC)	Reference output currentI _H DC A(DC)	maximum output currentI _{max} DC A(DC)	input currentI _N E A (AC)	Maximum input currentI _{max} E A (AC)	Rectifier unit size (width * height * depth, mm)
EC754-4GXX-235A	132	235	209	352	210	315	320*1370*380
EC754-4GXX-291A	160	291	259	436	260	390	320.1370.380
EC754-4HXX-425A	235	425	378	637	380	570	325*1530*542
EC754-4HXX-549A	300	549	489	823	490	735	525 1550 542
EC754-4IXX-678A	380	678	603	1017	605	907	523*1519*547
EC754-4IXX-835A	450	835	700	1252	745	1117	525 1517 547
EC754-4JXX-940A	500	940	837	1410	840	1260	
EC754-4JXX-1103	630	1103	982	1654	985	1477	750*1540*545
EC754-4JXX-1412	800	1412	1255	2120	1260	1890	750 1540 545
EC754-4JXX-1574	900	1574	1401	2361	1405	2107	

Table 1

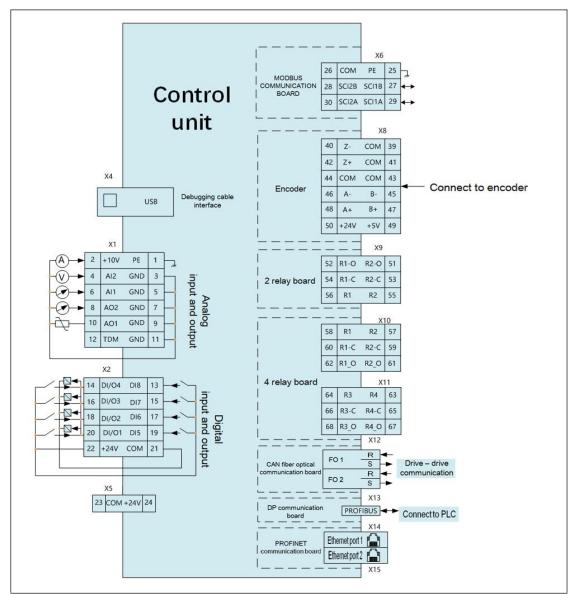

Table 2

active rectifier			
Rated output	Filter unit	Filter unit size	
power	Order number	(width * height * depth, mm)	
(KW)			
132	EC754-4GXL-235A	325*1400*355	
160	EC754-4GXL-291A	525*1400*555	
235	EC754-4HXL-425A	225*1522*542	
300	EC754-4HXL-549A	325*1533*543	
380	EC754-4IXL-678A	305*1750*544	

	EC754-4IXL-835A	450
	EC754-4JXL-940A	500
505*1750*544	EC754-4JXL-1103	630
505*1750*544	EC754-4JXL-1412	800
	EC754-4JXL-1574	900

Guideline

- The EC754 active rectifier is a high-frequency PWM rectifier unit that needs to be selected based on the actual load current and considering the overload capacity of EC754. For long-term allowable working current, its overload characteristic is: overload for 60s, with a cycle of 300s; When the maximum bus current is reached (as shown in the table above), it can operate for 5 seconds with a cycle of 300 seconds. When EC754 is installed in an altitude above 1000m or in a high temperature environment, it needs to be derated for use. The current derating and voltage derating curves can be found in the "Operating Environment" section;
- The main components on the grid side include fuses, contactors, circuit breakers, etc. It is recommended to configure fuses with semiconductor protection capabilities to effectively protect the rectifier from damage in the event of short circuits or overcurrent;
- > The operation of the EC754 active rectifier must use a matching filtering unit.



3.5.4 Power Unit Wiring Diagram

4. Control Unit and External Options

The control unit is the core control part of the E-CONVERT series products, responsible for controlling and coordinating all components in the drive system. EC750, EC751, EC752, and EC753 have the same control board hardware and are already standard, so there is no need to order separately.

4.1 Wiring diagram

4.2 Definition of control part terminals

Terminal classification	termi nal numb er	Terminal markings	Terminal Function Description	technical specifications
	1	PE	shielding grounding	Internally connected to the main circuit terminal PE
	2	+10V	+10V analog voltage grounded	+10V (±10%), maximum10mA
	3	GND	analog ground	Internal and COM isolation
	4	AI2	Analog Input 2	-10V/0V~10V or -20/0/4mA~20mA, with a resolution of 12 bits and 1 bit symbol bit
	5	GND	analog ground	Internal and COM isolation
				-10V/0V~10V or
X1	6	AI1	Analog Input 1	-20/0/4mA~20mA, with a resolution
simulation				of 12 bits and 1 bit symbol bit
Input output	7	GND	analog ground	Internal and COM isolation
	8	AO2	Analog output 2	-10V~10V or 0mA~20mA, with a resolution of 11 bits
	9	GND	analog ground	Internal and COM isolation
	10	AO1	Analog output 1	-10V~10V or 0mA~20mA, with a resolution of 11 bits
	11	GND	analog ground	Internal and COM isolation
	12	TDM	Motor temperature detection (PTC/KTY)	-40°C~300°C
	13	DI8		Optocoupler isolation input
	15	DI7	Digital input terminals	terminals, including DI5~DI7 with a
	17	DI6	5-8	maximum input frequency of 200Hz
X2Digital	19	DI5	5-0	and DI8 with a maximum input frequency of 10KHz
input and	14	DI/O4		Optocoupler isolation input
output	16	DI/O3		terminal,
	18	DI/O2	Digital input/output	Among them: maximum input
	20	DI/O1	terminals 1-4	frequency 200Hz, maximum output 50mA/24V DC

	21	СОМ	Digital input/output terminal common ground	Internal and GND isolation
Terminal classification	termi nal numb er	Terminal markings	Terminal Function Description	technical specifications
	22	+24V	+24VDigital input/output auxiliary power supply	5mA/20V~24V DC
X4Upper Computer communicati on		USB	USB interface	Standard USB_ B-type male port
X5 external	23	СОМ	Common ground	Internal and GND isolation
power interface	24	+24V	External+24V power supply positive terminal	1A/20V~28VDC
	25	PE	shielding grounding	Internally connected to the main circuit terminal PE
	26	СОМ	Common ground	Internal and GND isolation
X6	27	SCI1B	Serial interface 1	B signal of serial interface 1
Modbus	28	SCI2B	Serial interface 2	B signal of serial interface 2
	29	SCI1A	Serial interface 1	A signal of serial interface 1
	30	SCI2A	Serial interface 2	A signal of serial interface 2
	39	СОМ	Common ground	Isolation from internal GND
	40	Z-	Connected to motor encoder	Z-signal connected to motor encoder
	41	СОМ	Common ground	Isolation from internal GND
NOE 1	42	Z+	Connected to motor encoder	Z+signal connected to motor encoder
X8Encoder	43	СОМ	Common ground	Isolation from internal GND
interface	44	СОМ	Common ground	Isolation from internal GND
	45	B-	Connected to motor encoder	B-signal connected to motor encoder
	46	A-	Connected to motor encoder	A-signal connected to motor encoder
	47	B+	Connected to motor	B+signal connected to motor

			encoder	encoder
	40	.	Connected to motor	A+signal connected to motor
	48	A+	encoder	encoder
	40	COM	Encoder power	+5V or+24V power supply can be
	49	COM	selection	selected through a dial switch
	50	ENC	Common ground	Isolation from internal GND
	- 1		R2 relay normally	Maximum output 5A/30V DC;
	51	R2_O	open contact	10A/125V AC or 5A/250V AC
		D1 0	R1 relay normally	Maximum output 5A/30V DC;
	52	R1_O	open contact	10A/125V AC or 5A/250V AC
	termi			
Terminal	nal	Terminal	Terminal Function	
classification	numb	markings	Description	technical specifications
	er			
	53	R2 C	R2 relay normally	Maximum output 5A/30V DC;
	55	K2_C	closed contact	10A/125V AC or 5A/250V AC
	54	R1_C	R1 relay normally	Maximum output 5A/30V DC;
X9 2-way			closed contact	10A/125V AC or 5A/250V AC
Relay board	55	R2	R2 relay common	Maximum output 5A/30V DC;
			contact	10A/125V AC or 5A/250V AC
	56	R1	R1 relay common	Maximum output 5A/30V DC;
			contact	10A/125V AC or 5A/250V AC
	57	R2 O	R2 Normally open	maximum output 1A/30V DC;
	57	R2_0	contact of relay	0.3A/125V AC
	58	R1 O	R1 Normally open	maximum output1A/30V DC;
			contact of relay	0.3A/125V AC
	59	R2 C	R2 Normally closed	maximum output1A/30V DC;
			contact of relay	0.3A/125V AC
X10/X11	60	R1_C	R1 Normally closed	maximum output1A/30V DC;
4Circuit			contact of relay	0.3A/125V AC
relay board	61	R2	R2 Relay Common	maximum output1A/30V DC;
			Contact	0.3A/125V AC
	62	R1	R1 Relay Common	maximum output1A/30V DC;
			Contact	0.3A/125V AC
	63	R4 O	R4 Normally open	maximum output1A/30V DC;
			contact of relay	0.3A/125V AC
	64	R3 O	R3 Normally open	maximum output1A/30V DC;
1	64	R3_0	contact of relay	0.3A/125V AC

	65		R4 Normally closed	maximum output1A/30V DC;
	03	R4_C	contact of relay	0.3A/125V AC
			R3 Normally closed	maximum output1A/30V DC;
	66	R3_C	contact of relay	0.3A/125V AC
	(7	D 4	R4 Relay Common	maximum output1A/30V DC;
	67	R4	Contact	0.3A/125V AC
	(0	D2	R3 Relay Common	maximum output1A/30V DC;
	68	R3	Contact	0.3A/125V AC
X12		optical	Fiber optic transceiver	Maximum communication rate1M/s
CAN-Optical		fiber 1	integrated	Maximum communication rate1M/s
Communicati		optical	Fiber optic transceiver	Maximum communication rate1M/s
on		fiber 2	integrated	Maximum communication rate I M/s
X13		Profibus-		Maximum communication
Profibus-DPc		DPcomm	Profibus-D Pinterface	rate12M/s
ommunicate		unicate		Tate 12/01/S
X14、X15		PROFIN		Maximum communication rate
PROFINETc		ETcomm	PROFINETEtherNet	100Mb/s
ommunicate		unicate		1001/10/5

4.3 Ordering Data

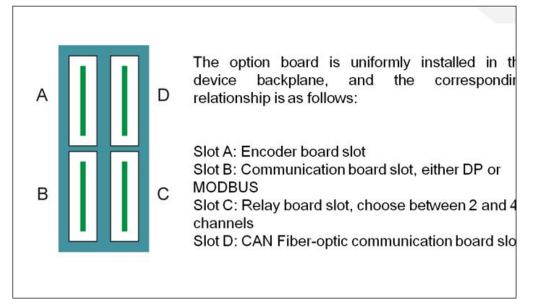
Name	Relay Board				
shape					
code	R01	R02			
order No	EC700Z-R01	EC700Z-R02			
	• 2 normally open/normally closed	• 4 NO/NC outputs			
	outputs	• Maximum output capacity:			
illustrate	• Maximum output capacity:	1A/30V DC;			
	5A/30V DC;	0.3A/125V AC			
	10A/125V AC 或 5A/250V AC				

Name DP communication board	Modbus Communication Board
-----------------------------	----------------------------

shape				
code	C01	C02		
order No	EC700Z-C01	EC700Z-C02		
	• PROFIBUS Open Message	Modbus RTU/ASCII		
illustrate	Protocol	Communication protocol		
mustrate	• Can be connected to standard	• Can be connected to standard		
	PROFIBUS-DP fieldbus system	Modbus fieldbus system		

Name	PROFINET-IO Communication Board	Encoder board		
shape				
code	C04	E01		
order No.	EC700Z-C04	EC700Z-E01		
	• Support for PROFINET	Supports HTL/TTL signals		
	communication	• Provide:		
illustration	• Can be connected to a standard	DC 5V/24V power supply;		
	PROFINET fieldbus system	TTL pulse distribution interface		

Name	CAN Fiber-optic communication board	Multifunctional operation panel		
shape				
code	C03	P01		
	EC700Z-C03	EC750Z-P01(Suitable for EC750 and		
		EC751 series products)		
order No.		EC752Z-P01(Suitable for EC752 series		
		products)		
		EC753Z-P01(Suitable for EC753 series		


	pro	oducts)
	• Maximum communication rate of •	Chinese operation interface, LCD
	1M/S for driver communication	display
	CAN Fiber-optic communication	Support parameter upload and
illustration	cable is required	download functions
mustration	• Only applicable to EC750 and •	Cabinet door installation
	EC751 series products	components (EC700Z-P03) need to
		be adapted for cabinet door
		installation

Name	Easy operation panel	Cabinet door installation components
shape		
code	P02	P03
order No	EC750Z-P02(Suitable for EC750 and EC751 series products) EC752Z-P02(Suitable for EC752 series products) EC753Z-P02(Suitable for EC753 series products) EC754Z-P02(Suitable for EC754 series products)	EC700Z-P03
illustration	• LED display	 The operation panel can be fixed on the frequency conversion cabinet Including injection molded casing, fasteners, and connecting cables (5m)

Name	USB debugging cable	CAN Fiber-optic communication
		cable

shape		
code	USBxM (x: cable length)	CANxM (x: cable length)
order No.	EC500Z-USBxM	EC700Z-CANxM
illustration	 Upper computer software debugging and use Optional cable length: 2m/5m 	 Used together with CAN Fiber-optic communication board The default length is 2m, which can be customized Two communication optical cables are required for receiving and sending communication data, and users can choose the number of communication optical cables according to their actual needs

4.4 Option Installation Method

Guideline:

> The EC7 series products offer a wide range of options, allowing users to choose according to their

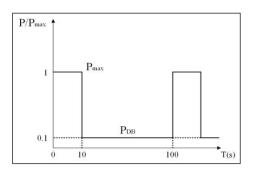
actual needs and save costs. EC7 has 4 slots, namely:

- Slot A Encoder board slot, suitable for differential signal encoders with HTL and TTL levels (EC752 does not have this option board);
- Slot B Communication board slot, optional DP communication board or MODBUS communication board;
- Slot C Relay board slot, optional with 2-way relay board or 4-way relay board;
- Slot D CAN Fiber-optic communication board slot, optional Fiber-optic communication board, which can easily realize drive to drive communication, and help to realize master-slave control, synchronous control, etc. (EC752 does not have this option board).
- The operation panel is divided into a multi-functional operation panel and a simple operation panel. The multi-functional operation panel has a Chinese display, and users can choose according to their actual needs. When installing the operation panel on the cabinet door, they can choose the operation panel component.

5. Brake unit

The braking unit is a device that provides braking power for the EC7 series products, divided into standard and optional according to configuration. Among the optional devices, 2-10kW is wall mounted (separate from the device), and 12.5-25kW is built-in (integrated with the device). The current voltage level of the braking unit is DC510-650V.

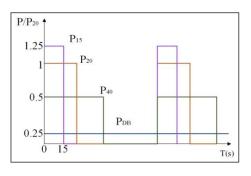
Wall mounted brake unit	Built-in brake unit
EC500Z	EC700Z


5.1 Ordering Data for Optional Brake Units

Product order number	Rated power (kW)	Peak powe r (kW)	Braking resistance (kW/Ω)	Rated voltage (V)	High thres hold (V)	Low thres hold (V)	Size (mm) (width × high × Deep)
EC500Z-B01	2	20	4.8/27.2	510-650	760	674	82×295×156
EC500Z-B02	4	40	9.6/16	510-650	760	674	82×295×156
EC500Z-B03	6	60	10/10	510-650	760	674	82×295×156
EC500Z-B04	10	100	15/6	510-650	760	674	145×300×156
EC500Z-B05	15	150	30/3	510-650	760	674	220×393×250
EC500Z-B06	25	200	50/2.2	510-650	760	674	220×393×250
EC500Z-B07	50	300	75/1.5	510-650	760	674	290×473×273
EC500Z-B08	100	400	100/1.1	510-650	760	674	290×473×273
EC700Z-B01	25	125	25/4.4	510-650	760	674	built-in
EC700Z-B02	50	250	50/2.2	510-650	760	674	built-in
EC700Z-B03	50	250	50/2.2	510-650	760	674	built-in

Note:

- Users need to select the corresponding braking resistor based on the braking resistor parameters provided in the table above;
- To achieve higher braking power, the braking units can be used in parallel, but their corresponding braking resistors must be connected;
- The braking unit supports two ordering methods, with the option code added after the device ordering number (shipped with the device) and a separate ordering number (shipped separately with the option).


5.2 Braking Characteristics

Note: The above figure shows the characteristic curve of the EC500Z series brake unit.

P_{DB}: Continuous braking power,

P_{max}: peak power

Note: The above figure shows the characteristic curve of the EC700Z series brake unit. $P_{15}=5*P_{DB}=$ The braking power at 15 seconds of braking every 90 seconds is the peak power $P_{40}=2*P_{DB}=$ Braking power at 40 seconds of braking every 90 seconds $P_{DB}=$ Rated continuous braking power

5.3 Standard Braking Unit Braking Resistance Parameters

Туре	Frequency (kW)	Resistance parameters W/Ω
EC750-4AXX-06A1	2.2	260/260
EC750/1-4AXX-07A9	3	390/175
EC750/1-4AXX-10A5	4	390/150
EC750/1-4AXX-13A6	5.5	520/100
EC750/1-4BXX-19A6	7.5	780/75
EC750/1-4BXX-26A8	11	1040/50
EC750/1-4CXX-033A	15	1560/40

EC750/1-4CXX-39A2 18.5	1800/32
------------------------	---------

Note: EC750/1 with a power output of 18.5kW and below is equipped with a standard braking unit. Users only need to select the corresponding braking resistor based on the braking resistor parameters in the table above.

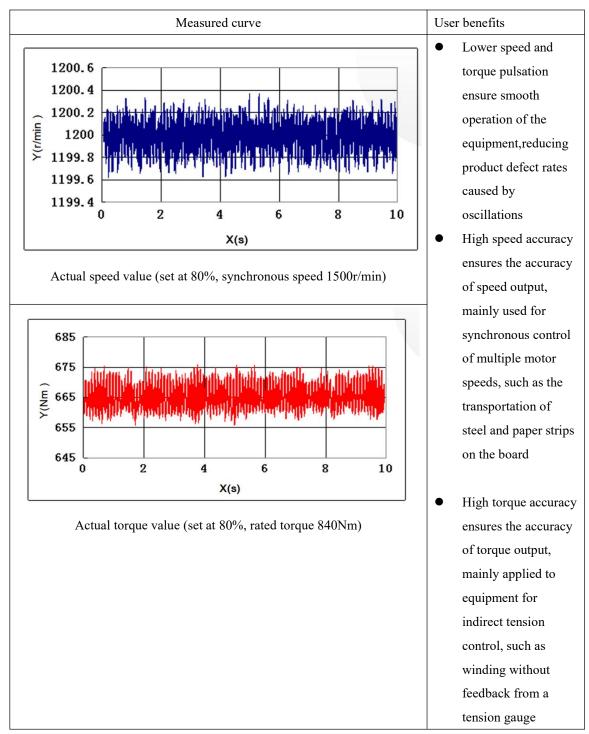
Guideline:

According to power division, EC75 has designed multiple brake unit configurations.

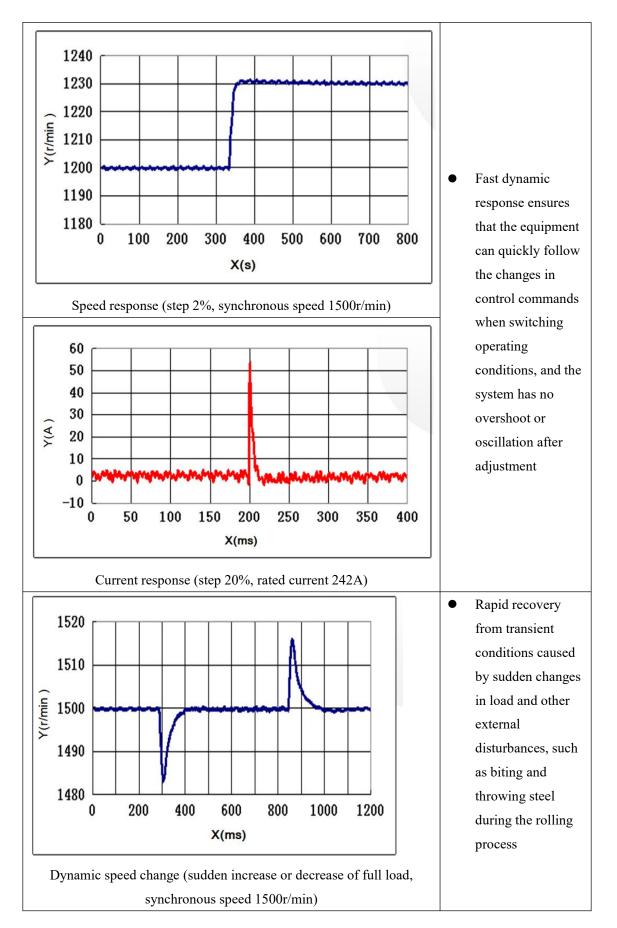
	EC750/1 converter and inverter					
	collocation	Standard built-in				
power 2.2kW-18.5kW	method					
power 2.2kw-18.5kw	Brake	EC500Z series external brake unit that can be connected in parallel				
	extension	EC3002 series external brake unit that can be connected in paraner				
nower 22kW 00kW	collocation	Optional automal EC5007 garieg brake unit				
power 22kW-90kW	method	Optional external EC500Z series brake unit				
		Optional built-in, the structural size determines the model and quantity				
		of optional built-in brake units:				
nower 1101-W 4001-W	collocation	4G: configuration EC700Z-B01, Maximum quantity is 1				
power 110kW-400kW	method	4H: configuration EC700Z-B02, Maximum quantity is 1				
		4I: configuration EC700Z-B03, Maximum quantity is 2				
		4J: configuration EC700Z-B03, Maximum quantity is 3				
		EC752 basic rectification				
		Optional built-in, the structural size determines the model and quantity				
2001-W 7101-W	collocation	of optional built-in brake units:				
power 200kW-710kW	method	4D: configuration EC700Z-B01, Maximum quantity is 1				
		4E: configuration EC700Z-B02, Maximum quantity is 1				

6. Performance or Function

Project	Index	Define	Test conditions
Speed pulsation	±0.1%	Pulsation (%)=(set value) - (actual value)/(Rated value) * 100	 Rated value takes the synchronous speed of the motor Based on the actual PG value detected by the system as feedback The results are based on the maximum value within 10 seconds Stable speed operation, full load
Speed accuracy	0.003%	Precision (%)= (set value) - (average value) /(Rated value) * 100	 Rated value takes the synchronous speed of the motor Based on the actual PG value detected by the system as feedback Effective after 10s of average value Stable speed operation, full load
Speed response time	ts≦70ms	Set value Actual value (T)	 Based on the actual PG value detected by the system as feedback Synchronous speed with speed step less than 10% Sudden increase of speed step, full load
Torque Ripple	±3%	Pulsation (%) = (set value) - (actual value)/(Rated value) * 100	 Rated value takes the rated torque of the motor Feedback based on torque tester detection values The results are based on the maximum value within 10 seconds Locked motor rotation
Torque accuracy	1%	Precision (%)= (set value) -	• Rated value takes the rated torque


6.1 Indicator Definition

		(average value) /(Rated value) * 100	 of the motor Feedback based on torque tester detection values Effective after 10s of average value Locked motor rotation
Torque current response time	ts≦15ms	Set value (T) (T) (T)	 Feedback based on Hall sensor detection values Take a current step of 20% of the rated current Sudden current step, full load
Maximum dynamic speed change	5%	Dynamic speed change $(\%) = \Delta D/(\text{rated value}) *$ 100 Set value Δn (T)	 Rated value takes the synchronous speed of the motor Based on the actual PG value detected by the system as feedback Sudden increase/decrease of full load


Note:

- Performance testing is conducted on AC/DC traction units, and the testing motor is a three-phase AC asynchronous motor;
- ➤ The speed measurement uses a 1024 pulse incremental encoder, and the torque tester outputs -10-10V, with a measurement accuracy of 0.1% (full scale);
- The above performance indicators vary depending on different installation situations and motor types. Please contact our company for details.

6.2 Test Data

User benefits

6.3 Major Function

6.3.1 Connector Data Group

The control parameters (speed setting, control words, etc.) include 2 switchable data sets, allowing users to switch from local operations to remote control between the two operation sources. For example, the start and stop of the frequency converter can be switched from the operation panel to PLC control.

6.3.2 Motor Data Set

The parameters related to the motor rating (speed, current, etc.) include 4 switchable data sets, and a frequency converter can switch and control 4 different motors. For example, if a commonly used motor malfunctions during operation, the relevant parameters can also be quickly switched after the frequency converter is connected to the backup motor.

6.3.3 Functional Data Group

The functional parameters (control mode, acceleration and deceleration time, etc.) include four switchable data sets, and different control schemes are selected according to different process requirements. For example, selecting different proportional integration gains for different load types.

6.3.4 Parameter Interconnection

The data between functional blocks and variables related to control functions appear in the form of connectors. Connectors can not only be used for observation, but also for interconnection with control parameters. For example, the speed setting value can be given from internal fixed settings, electric potentiometer settings, or external analog input ports or communication interfaces through parameter interconnection.

6.3.5 Macro Application

For different application scenarios, setting and connecting functional parameters through pre programming to achieve rapid debugging is a fast function for standard application requirements.

- Standard application macros
- Manual/automatic macro
- PID control macro
- Torque control macro
- Sequence control macro
- Master-slave control macro

6.3.6 Free Function Block

The set of user-defined programming functions, including logic, operations, process control, and other functional blocks, is an important feature to address non-standard application requirements. For example, using logical functions to achieve interlocking control of frequency converter start stop and external fan, brake, emergency stop and other signals.

• General function block

☐ Fixed setting value ☐ Display module ☐ Conversion module

• Logic function block

☑ AND, OR, NOT gate ☑ Tongor, XOR gate Gate ☑ On/Off, bidirectional delay timer

☆RS flip-flop ☆D Flip-Flop

• Calculation function block

☆Adder, Subtractor ☆Multiplier, Divider ☆Integrator, Differentiator

☆Absolute value generator with filtering ☆Signal monitor with hysteresis loop ☆Multiple signal selector

Custom feature value generator

6.3.7 Motor Identification

The process of matching the device with the motor, obtaining accurate motor parameters (resistance, inductance, etc.) through static measurements of DC and single-phase AC. After the operation of the frequency converter, online compensation can be performed on the previously identified cold state parameters based on environmental changes and actual operating conditions, which can continuously improve the motor control performance.

6.3.8 PI Parameter Self-tuning

In the process of matching the device and transmission equipment, accurate mechanical parameters (friction coefficient, Moment of inertia) are obtained through acceleration and deceleration rotation measurement, and on this basis, PI parameters of speed loop and Current loop are calculated to achieve the best dynamic and static performance indicators.

6.3.9 Power Stops But Machine Continues

When the power supply system is temporarily interrupted or the voltage drops instantaneously, the mechanical energy on the transmission side can be converted into electrical energy and fed back to the DC side of the device, extending the operating time of the frequency converter. The duration is determined by the Moment of inertia of the transmission system.

6.3.10 Droop Control

When multiple motors drive the same load, the load between each motor can be evenly distributed to achieve speed synchronization.

6.3.11 Hopping Frequency

To avoid mechanical system vibration, frequency resonance points are automatically avoided during acceleration, deceleration, and constant speed operation.

6.3.12 Speed tracking restart

The motor is in a free running state and can accurately track the current speed when starting.

6.3.13 DC Brake Restart

The motor is in a free running state with irregular steering, and the frequency converter outputs DC power to quickly stop the motor before restarting, which can reduce the impact on the system.

6.3.14 Zero Servo

In lifting machinery, the position of suspended objects at high altitudes can be ensured to be constant, and this function can also be used to complete the return to zero of the machinery.

6.3.15 Simple PLC

The frequency converter can operate in cycles at pre-set frequencies, supporting up to 15 speeds. The size of each frequency segment, acceleration and deceleration time, and operating time can be set through parameters, which can achieve simple PLC functions.

6.3.16 Swing Frequency Control

By utilizing the specific triangular swing, an adjustable P-step speed is added during the operation of the motor to meet the process requirements of transverse winding in industries such as textiles and chemical fibers.

6.3.17 Holding Brake Control

Reasonably control the motor body brake or the externally installed brake. The opening and closing of the brake are interlocked with internal signals of the frequency converter such as speed and fault. The action delay time and threshold can be set through parameters.

6.3.18 PID Control

Control functions commonly used in process control, such as pressure, flow, and liquid level regulation.

Debugging software

Provide users with two versions of upper computer debugging software:

DriveInspector (PC version) and MobileInspector (mobile version);

DriveInspector Features:

^dChinese display interface;

☆All basic parameters are set and monitored in a table format;

Reading, writing, uploading, and downloading parameters;

[™]Search, compare, and print parameters;

Keyboard: Quickly control the start and stop of the frequency converter, displaying the current status;

☑ Oscilloscope: Simultaneously record 10 curves, of which 2 are computable;

[™]Online mode: USB (serial communication for one device), RS485 (DP communication for multiple devices);

Four sets of motor parameter switching.

3			DriveInspecto					
这里显示可以用的女档操作。但 打印解	1 m m			_		-		
						1 JE (1)	00 2	1111
		DO) HERRY HERRY	(TARE() のお() の()() 不切	W CWTH	-	ER TE	15 INNS	HETE STAR
IN		TU	80		IT.H		= 21	1138
Parameters V1.00.wis	2							
3 放棄信息 🖉	参数总览							
自参数总规	1100493	9524	- 380	States and States	8426			
1. 星元参数 3. 支援器相关参数	1 1 2792	78.67			00.00	and an		
3 李凯相关参数	2 r0001	只然就出前状态				· 注意	×	वसवतः
二 4. 朱璧控制		电机材度		infein.		alitan m	e/sin	直动乐乐电压
5. 转矩控制		先用副标注电压		9		**		9 68858T
■ 6. v)#控制		2.所給除出考定 の目的において、		3		 Mill 		@ 运行检查数据
3 7. 点动控制		性质器缺出功率 自由存出 电压	-	-	D	• WR:		● 正正进行
1.起弹控制		C ALLER HERE			0	100 M	止 業位	停止 : 61:1487
■ 9. 加減速控制 ■ 10. 標準拾定		新聞見が		-	0			
11. 熱野相軍		Child an		_		4		
				1		anter a	林田家出建筑发示。	- 20- 11 - 20 A O O WO
	40- 40- 35-90-70-	ن ار	and the second second	~	i shi dayat	would grow the		
14. 开关置输入输出的 14. 小人間加入 約	-0	شعير الحر	and a state of the		ini data	would grow the		
14. 开关量输入输出的	0-100- 35-30-20- 30-40- 35-30-20- 30-40- 35-30-	منعمو کر	and the second second	and the second s		would grow the		
	6- 30- 0- 0- 35- 9- 70- 20- 00- 35- 30- 30- 00- 35- 30- 30- 00-	A North State	and the second se	and the second s		would grow the		
14. 开关量输入输出的	0-100- 35-30-20- 30-30- 30-30- 35-30-30-	Manager	and the second se	and the second s		Notes and Annual State	e e a mois	
14. 开关量输入输出的	5-00 90 55-90 10 55-90 10 50-00 55-90 10 50-00 10-00	Marken		and a second		Notes and Annual State	e e a mois	
14. 开关量输入输出的	5-00 55-90 50-00 55-90 50-00 55-00 55-00 50-00 15-00 15-00 10-00	Manaka	and the second	and a second	~	Notes and Annual State		
14. 开关量输入输出的	0- 90- 00- 00 55- 90- 00- 00 55- 90- 00- 00- 10- 00- 10- 20- 10- 20- 5- 10- 5- 10-	NWW		and a second	~	Notes and Annual State	e e a mois	
14. 开关量输入输出的	5-00 55-90 50-00 55-90 50-00 55-00 55-00 50-00 15-00 15-00 10-00	And a start		and the second sec		Notes and Annual State	eeands	

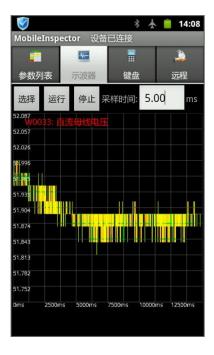
6.3.19 MobileInspector functional features: (The frequency converter end needs to be equipped with a dedicated Bluetooth module EC700Z-M01):

^dChinese display interface;

☑ All basic parameters are set and monitored in a table format;

Reading and writing parameters;

☆ Keyboard: Quickly control the start and stop of the frequency converter, displaying the current status;


[™]Oscilloscope: Simultaneously record 8 curves;

☑Online mode: Bluetooth (wireless communication, used for one device);

[™]System requirements: Android 2.2 and above smartphones.

EC75 Series Products Frequency Converters

7. Usage Environment

7.1 Thermal Design Parameters

The losses of frequency converters, inverters, and rectifiers refer to the calculated heating capacity of frequency converters, inverters, and rectifiers operating within the rated voltage range, rated output current, and default carrier frequency. The loss, air volume, and air pressure values provided in this article are all calculated through software simulation, and there is a certain error between them and the actual values, with an error range of \pm 5%.

Туре	Loss (W)	Air volume (m ³ / H)	Wind pressure (Pa)
EC750-4AXX-06A1	40	27	54
EC750-4AXX-07A9	55	27	54
EC750-4AXX-10A5	75	27	54
EC750-4AXX-13A6	100	27	54
EC750-4BXX-19A6	135	100	77
EC750-4BXX-26A8	200	100	77
EC750-4CXX-033A	265	98	53
EC750-4CXX-39A2	320	98	53
EC750-4DXX-46A4	400	202	53
EC750-4DXX-61A9	565	202	53
EC750-4DXX-77A3	640	202	53
EC750-4EXX-92A8	810	174	80
EC750-4EXX-113A	940	181	78
EC750-4FXX-149A	1375	181	78
EC750-4FXX-184A	1650	260	141
EC750-4GXX-210A	1885	439	140
EC750-4GXX-260A	2185	439	140
EC750-4HXX-310A	2615	875	216
EC750-4HXX-380A	3270	1090	300
EC750-4HXX-490A	4320	1090	300

7.1.1 Thermal design parameters of EC750 series frequency converters

Туре	Loss (W)	Air volume (m ^{3/} H)	Wind pressure (Pa)
EC751-4AXX-07A9	35	27	54
EC751-4AXX-10A5	80	27	54
EC751-4AXX-13A6	90	27	54
EC751-4BXX-19A6	140	100	77
EC751-4BXX-26A8	155	100	77
EC751-4CXX-033A	205	98	53
EC751-4CXX-39A2	265	98	53
EC751-4DXX-46A4	240	202	53
EC751-4DXX-61A9	365	202	53
EC751-4DXX-77A3	450	202	53
EC751-4EXX-92A8	540	203	105
EC751-4FXX-113A	670	300	208
EC751-4FXX-149A	860	300	208
EC751-4FXX-184A	1145	300	208
EC751-4GXX-210A	1330	694	347
EC751-4GXX-260A	1580	694	347
EC751-4HXX-310A	1810	1653	452
EC751-4HXX-380A	2350	1653	452
EC751-4HXX-490A	2570	1653	452
EC751-4IXX-605A	3005	3310	456
EC751-4IXX-745A	3925	3310	456
EC751-4JXX-840A	4955	4970	454
EC751-4JXX-985A	6160	4970	454
EC751-4JXX-1260	7380	4970	454
EC751-4JXX-1405	8460	4970	454

7.1.2 EC751 Series Inverter Thermal Design Parameters

7.1.3 Thermal Design Parameters of EC752 Series Rectifier

Туре	Default carrier frequency (kHz)	Loss (W)	Air volume (m ³ / H)
EC752-4D-420A	1480	521	302
EC752-4D-530A	1985	521	302
EC752-4D-820A	2965	521	302
EC752-4E-1200	3495	1350	438
EC752-4E-1500	4595	1350	438

7.1.4 Thermal Design Parameters of EC753 Series Rectifier

EC75 Series Products Frequency Converters

Туре	Default carrier frequency (kHz)	Loss (W)	Air volume (m ^{3/} H)	
EC753-4J-1050	5070	4970	454	
EC753-4J-1300	4960	4970	454	
EC753-4J-1700	7340	4970	454	

7.1.5 Thermal design parameters of EC754 series rectifier

Туре	Loss (W)	Air volume (m ³ / H)	Туре
EC754-4GXX-235A	1135	694	347
EC754-4GXX-291A	1915	694	347
EC754-4HXX-425A	2550	1653	452
EC754-4HXX-549A	3550	1653	452
EC754-4IXX-678A	3730	3310	456
EC754-4IXX-835A	4945	3310	456
EC754-4JXX-940A	5450	3310	456
EC754-4JXX-1103	6840	4970	454
EC754-4JXX-1412	7305	4970	454
EC754-4JXX-1574	8550	4970	454

7.2 Carrier Frequency Capacity Reduction

Increasing the carrier frequency can appropriately reduce the operating noise of the motor, but it will increase the switching loss of the power device. Therefore, it is necessary to reduce the capacity of the devices (EC750 and EC751).

7.2.1 EC750 Derating Characteristics (2.2-250KW):

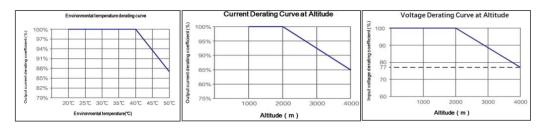
	Output c	urrent dera	ting depend	ding on pul	se frequency	(factory d	efault pulse	e frequency	of 2kHz
Product order				freq	uency conve	rter)			
number	power		Rated ou	tput curren	t at correspo	nding swite	ching frequ	ency (A)	
	(kw)	2kHz	4kHz	6kHz	8kHz	10kHz	12kHz	14kHz	16kHz
EC750-4A-06A	2.2	6.1	5.1	4.5	3.4	2.7	2.2	1.3	1.3
1	2.2	0.1	5.1	1.5	5.1	2.,	2.2	1.5	1.5
EC750-4A-07A	3	7.9	7.0	62	5.1	4.9	3.4	3.2	3.0
9	3	7.9	7.0	6.3	5.1	4.9	5.4	5.2	5.0
EC750-4A-10A	4	10.5	9.0	7.7	6.1	5.0	4.2	3.5	3.0

5									
EC750-4B-13A	5.5	13.6	10.4	9.0	7.6	6.0	5.7	4.4	3.8
EC750-4B-19A 6	7.5	19.6	15.9	13.5	10.8	9.3	8.0	7.6	6.0
EC750-4C-26A 8	11	26.8	22.6	19.8	17.0	14.6	12.7	11.3	10.1
EC750-4C-033 A	15	33.0	26.8	22.4	18.4	14.8	12.3	10.5	8.8
EC750-4C-39A 2	18.5	39.2	33.5	28.0	23.5	19.9	17.7	14.8	13.8
EC750-4D-46A 4	22	46.4	38.5	32.3	26.2	22.7	18.2	15.5	12.7
EC750-4D-61A 9	30	61.9	53.5	46.6	39.8	34.7	29.7	25.9	22.6
EC750-4D-77A 3	37	77.3	63.4	52.8	43.7	36.5	30.4	25.5	20.8
EC750-4E-92A 8	45	92.8	71.8	56.2	46.0	38.3	33.2	27.6	21.8
EC750-4E-113 A	55	113.0	91.6	73.2	58.5	47.6	37.7	29.6	23.8
EC750-4F-149 A	75	149.0	118.0	93.9	75.0	-	-	-	-
EC750-4F-184 A	90	184.0	152.1	126.1	103.7	-	-	-	-
EC750-4G-210 A	110	210.0	176.7	148.9	125.9	-	-	-	-
EC750-4G-260 A	132	260.0	210.6	170.2	138.0	-	-	-	-
EC750-4H-310 A	160	310.0	249.2	200.0	159.8	-	-	-	-
EC750-4H-380 A	200	380.0	290.2	219.6	164.2	-	-	-	-
EC750-4H-490 A	250	490.0	392.2	313.8	251.2	-	-	-	-

7.2.2 EC750 Derating Feature 2:

	Output current derating depending on pulse frequency (factory default pulse						
Product order	frequency of 1.5kHz frequency converter)						
number	power	Rated output current at corresponding switching frequency (A)					
	(kw)	1.5kHz	3.5kHz	5.5kHz	7.5kHz		
EC750-4I-605A	315	605.0	459.3	348.3	262.5		

EC750-4I-745A 400 745.0 595.2 471.3 374.4


7.2.3 EC751 Derating Feature 1:

		Output	current derat	ing depending	, on pulse free	uency (factor	y default puls	se frequency of	of 2kHz
Product order		frequency converter)							
number	power	Rated output current at corresponding switching frequency (A)							
	(kw)	2kHz	4kHz	6kHz	8kHz	10kHz	12kHz	14kHz	16kHz
EC751-4Axx-07A9	3	7.9	7.0	6.3	5.1	4.9	3.4	3.2	3.0
EC751-4Axx-10A5	4	10.5	9.0	7.7	6.1	5.0	4.2	3.5	3.0
EC751-4Axx-13A6	5.5	13.6	10.4	9.0	7.6	6.0	5.7	4.4	3.8
EC751-4Bxx-19A6	7.5	19.6	15.9	13.5	10.8	9.3	8.0	7.6	6.0
EC751-4Bxx-26A8	11	26.8	22.6	19.8	17.0	14.6	12.7	11.3	10.1
EC751-4Cxx-033A	15	33.0	26.8	22.4	18.4	14.8	12.3	10.5	8.8
EC751-4Cxx-39A2	18.5	39.2	33.5	28.0	23.5	19.9	17.7	14.8	13.8
EC751-4Dxx-46A4	22	46.4	38.5	32.3	26.2	22.7	18.2	15.5	12.7
EC751-4Dxx-61A9	30	61.9	53.5	46.6	39.8	34.7	29.7	25.9	22.6
EC751-4Dxx-77A3	37	77.3	63.4	52.8	43.7	36.5	30.4	25.5	20.8
EC751-4Exx-92A8	45	92.8	71.8	56.2	46.0	38.3	33.2	27.6	21.8
EC751-4Fxx-113A	55	113.0	91.6	73.2	58.5	47.6	37.7	29.6	23.8
EC751-4Fxx-149A	75	149.0	118.0	93.9	75.0	-	-	-	-
EC751-4Fxx-184A	90	184.0	152.1	126.1	103.7	-	-	-	-
EC751-4Gxx-210A	110	210.0	176.7	148.9	125.9	-	-	-	-
EC751-4Gxx-260A	132	260.0	210.6	170.2	138.0	-	-	-	-
EC751-4Hxx-310A	160	310.0	249.2	200.0	159.8	-	-	-	-
EC751-4Hxx-380A	200	380.0	290.2	219.6	164.2	-	-	-	-
EC751-4Hxx-490A	250	490.0	392.2	313.8	251.2	-	-	-	-

7.2.4 EC751 capacity reduction feature three:

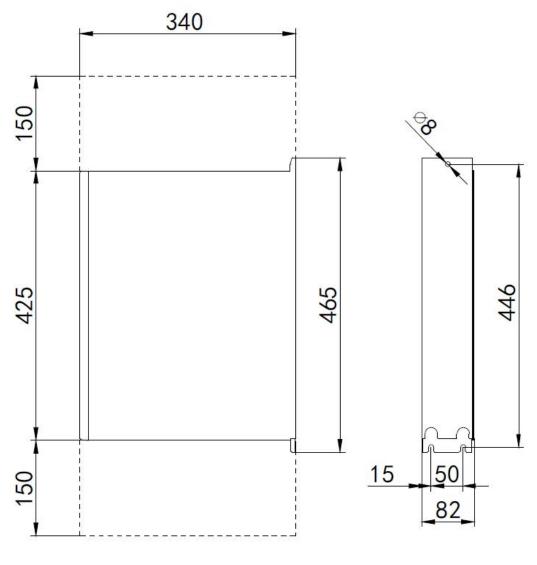
	Output current derating depending on pulse frequency (factory default pulse frequency of							
Product order	1.5kHz frequency converter)							
number	power	ower Rated output current at corresponding switching frequency (A)						
	(kw)	1.5kHz	3.5kHz	5.5kHz	7.5kHz			
EC751-4IXX-605A	315	605.0	459.3	348.3	262.5			
EC751-4IXX-745A	400	745.0	595.2	471.3	374.4			
EC751-4JXX-840A	450	840.0	635.0	490.0	385.0			
EC751-4JXX-985A	560	985.0	768.0	607.0	488.0			
EC751-4JXX-1260	710	1260.0	900.0	656.0	486.0			
А					480.0			
EC751-4JXX-1405	800	1405.0	1026.0	764.0	580.0			
А	800	1405.0	1020.0	/04.0	580.0			

7.2.5 Temperature and Altitude Derating

8. Preservation and Transportation

The EC75X series products must meet the following environmental conditions during storage and transportation:

Mechanical Parameters						
	transportion	Grade 2M3 according to EN60068-2-6				
Vibration		Grade 3M4 complies with EN60068-2-6; 10~58HZ: constant				
vioration	operation	amplitude 0.075mm,				
		58~200HZ: constant acceleration=9.81m/s2				
	transportion	Grade 2M3 according to EN60068-2-27				
Impact	operation	Grade 3M4 complies with EN60068-2-27; Constant				
	operation	acceleration=49m/s2, lasting for 30ms				
		Environmental parameters				
protectio	n grada	Level I (system with protective grounding) and Level III (PELV)				
protectio	ni grade	comply with EN61800-5-1				
Impact pr	rotection	Comply with EN61800-5-1 when used correctly				
	conservation	符合 EN60721-3-1 的 1K3, 温度-10℃~+55℃				
Climate	transportatio	2K4 according to EN60721-3-2, temperature -40 °C~+70 °C,				
environment	n	maximum air humidity of 95% at 40 °C				
condition		3K4 in accordance with EN60721-3-3, with temperatures ranging				
condition	operation	from 0 °C to+40 °C, no condensation, water splashing, or freezing				
		allowed				
Environmental	conservation	1C2 standard according to EN60721-3-1				
standards/haza	transportatio	2C2 standard in accordance with EN60721-3-2				
rdous	n					
chemicals	operation	3C2 standard in accordance with EN60721-3-3				

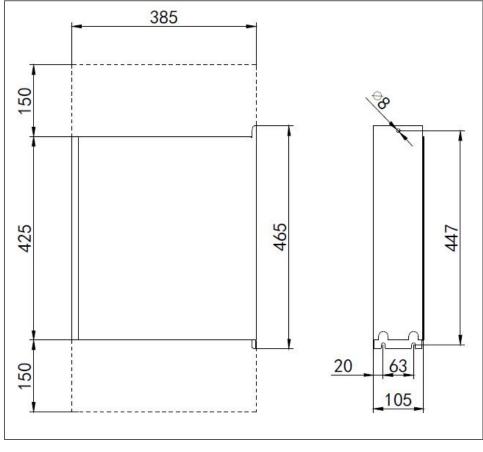

Special Notice

- 1. The device power involved in the sample generally refers to light load power;
- 2. For more selection data and technical parameters, please refer to the EC7 User Manual;
- 3. If you have any questions, please consult WISDRI (Wuhan) Automation Co., Ltd;

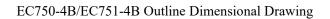
9. Overall Dimensions

9.1 Installation hole size EC750-4A/EC751-4A

The dashed line indicates the ventilation space that needs to be reserved.

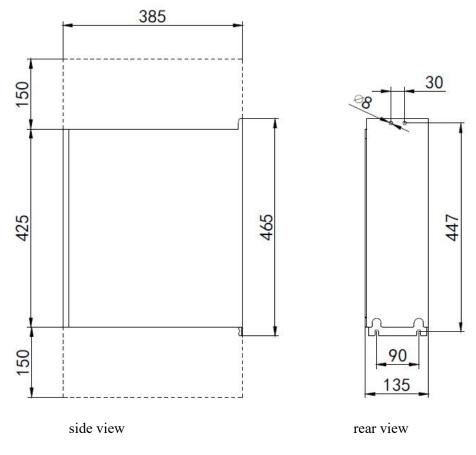


side view


EC750-4A/EC751-4A Outline Dimensional Drawing

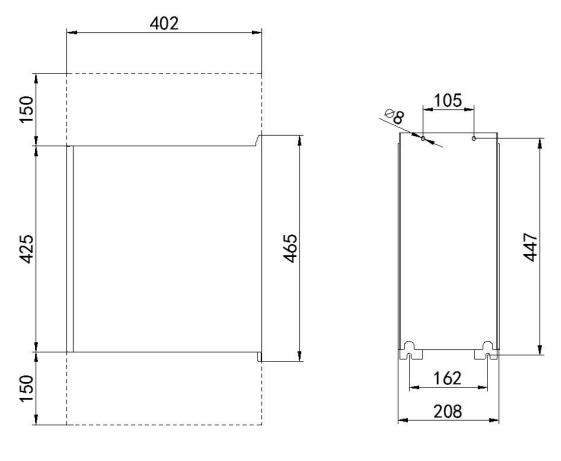
9.2 Installation Hole Size EC750-4B/EC751-4B

The dashed line indicates the ventilation space that needs to be reserved.



side view

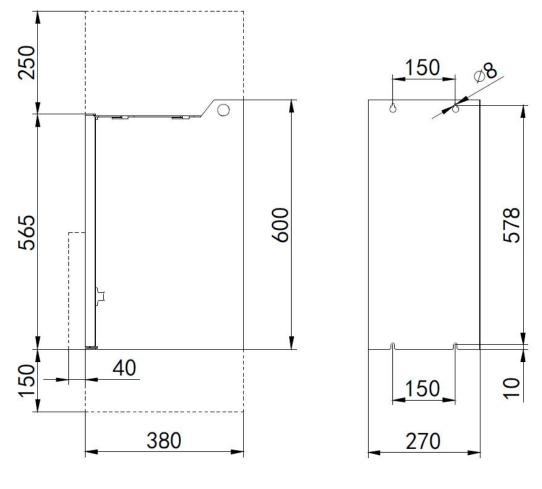
9.3 Installation hole size EC750-4C/EC751-4C


The dashed line indicates the ventilation space that needs to be reserved.

EC750-4C/EC751-4C Outline Dimensional Drawing

9.4 Installation Hole Size EC750-4D/EC751-4D

The dashed line indicates the ventilation space that needs to be reserved

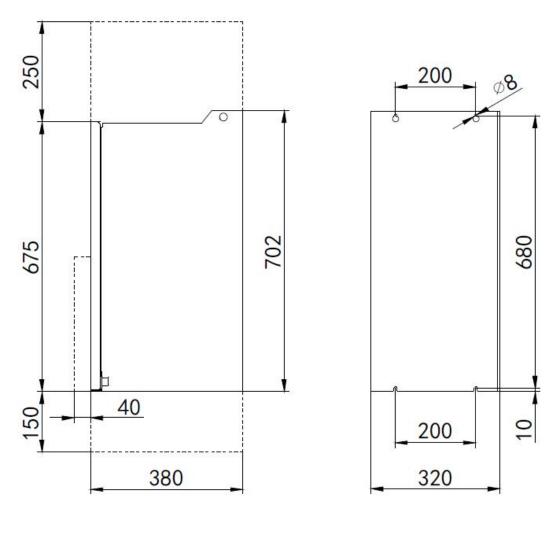

side view

rear view

EC750-4D/EC751-4D Outline Dimensional Drawing

9.5 Installation hole size EC750-4E/EC751-4E

The dashed line indicates the ventilation space that needs to be reserved

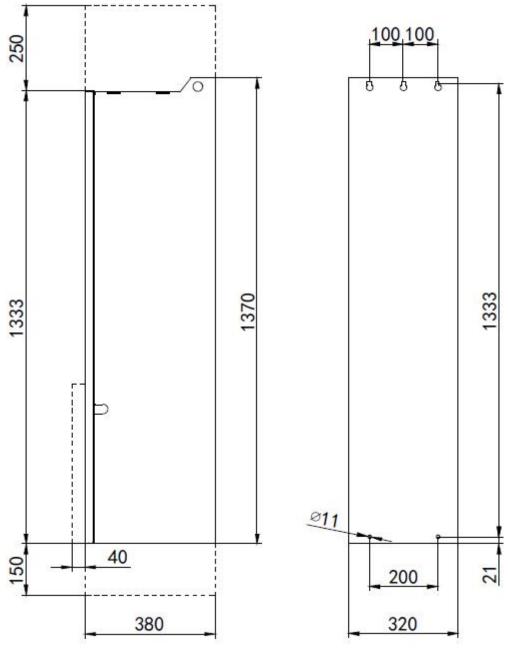

side view

rear view

EC750-4E/EC751-4E Outline Dimensional Drawing

9.6 Installation hole size EC750-4F/EC751-4F

The dashed line indicates the ventilation space that needs to be reserved.

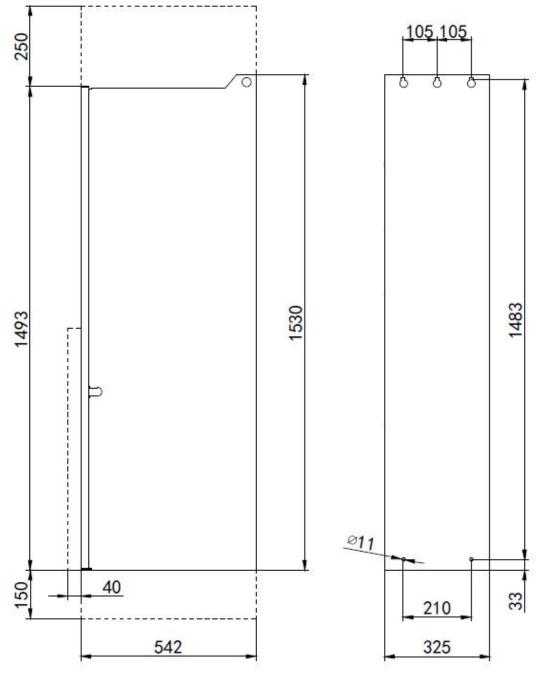


side view

EC750-4F/EC751-4F Outline Dimensional Drawing

9.7 Installation hole size EC750-4G/EC751-4G

The dashed line indicates the ventilation space that needs to be reserved.

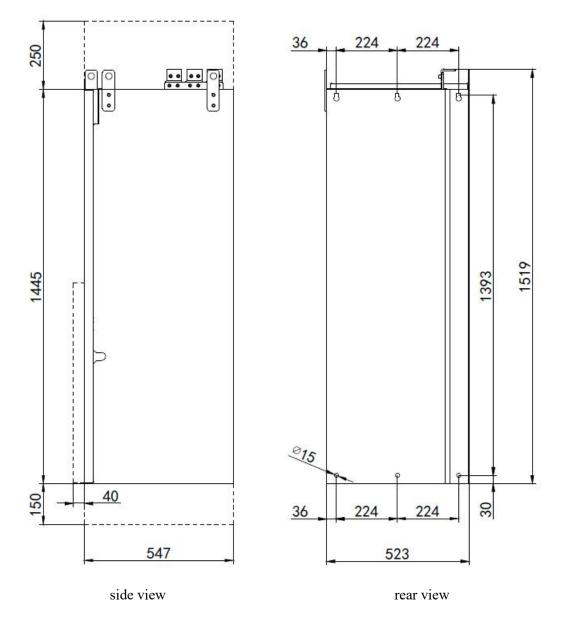


side view

EC750-4G/EC751-4G Outline Dimensional Drawing

9.8 Installation hole size EC750-4H/EC751-4H

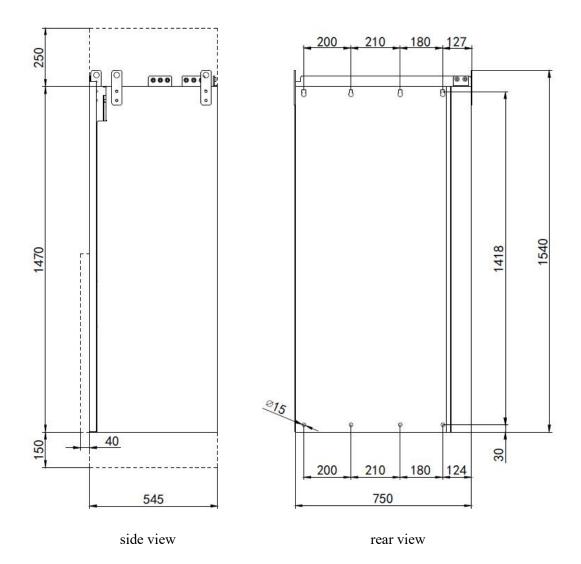
The dashed line indicates the ventilation space that needs to be reserved.



side view

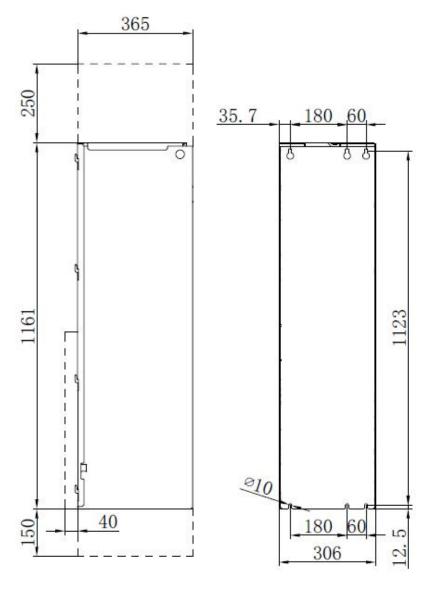
EC750-4H/EC751-4H Outline Dimensional Drawing

9.9 Installation hole size EC750-4I/EC751-4I


The dashed line indicates the ventilation space that needs to be reserved.

EC750-4I/EC751-4I Outline Dimensional Drawing

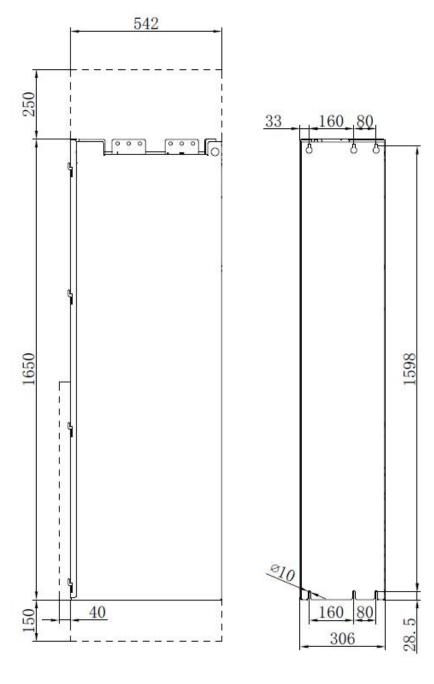
9.10 Installation hole size EC751-4J/EC753-4J


The dashed line indicates the ventilation space that needs to be reserved.

EC751-4J Outline Dimensional Drawing

9.11 Installation hole size EC752-4D

The dashed line indicates the ventilation space that needs to be reserved

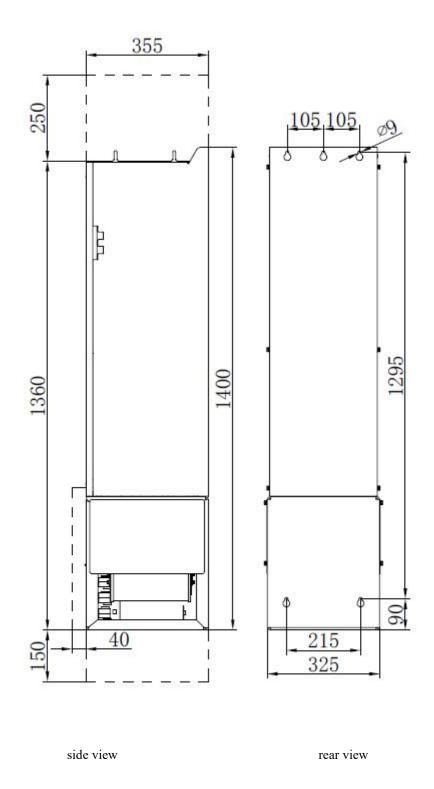


side view

EC752-4D Outline Dimensional Drawing

9.12 Installation hole size EC752-4E

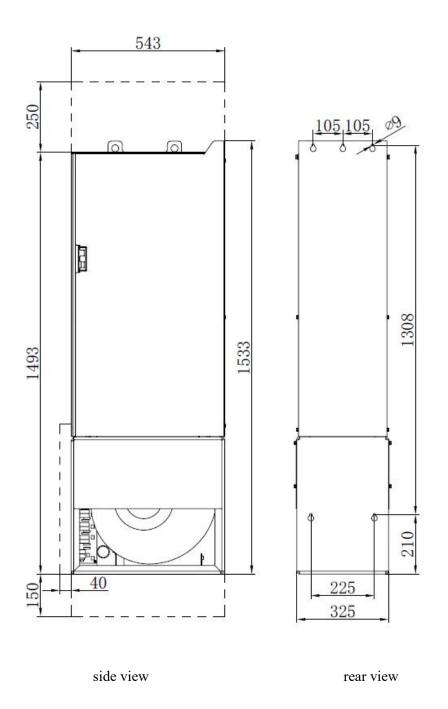
The dashed line indicates the ventilation space that needs to be reserved



side view

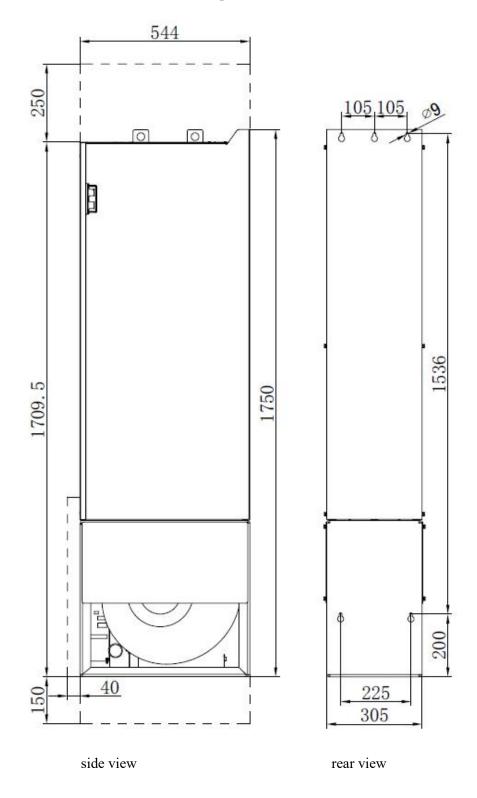
EC752-4E Outline Dimensional Drawing

9.13 External dimensions of EC754-4G filtering unit


The dashed line indicates the ventilation space that needs to be reserved.

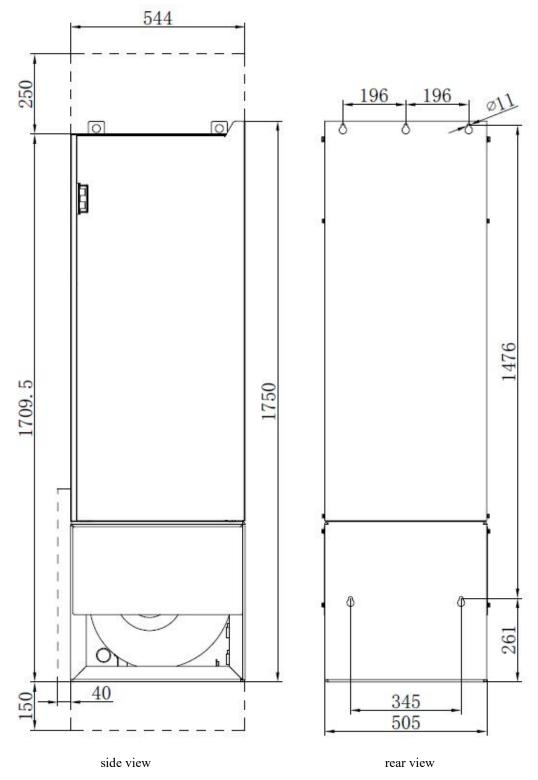
EC754-4G Filter Unit Outline Dimensional Drawing

9.14 External Dimensions of EC754-4H filtering unit


The dashed line indicates the ventilation space that needs to be reserved.

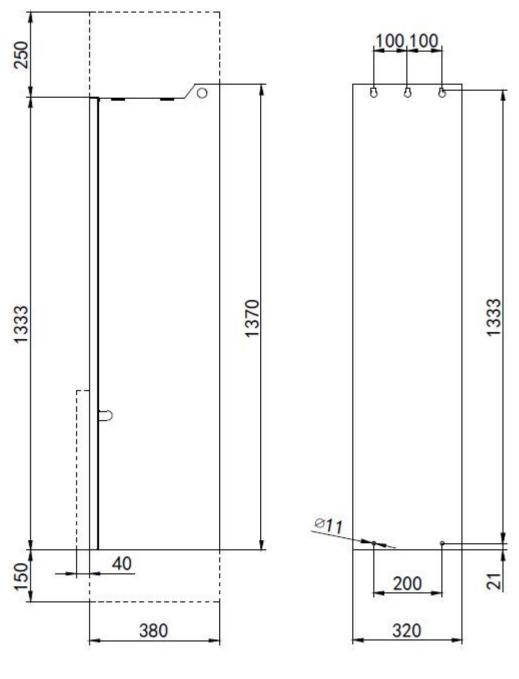
EC754-4H Filter Unit Outline Dimensional Drawing

9.15 External Dimensions of EC754-4I Filtering Unit


The dashed line indicates the ventilation space that needs to be reserved

EC754-4I Filter Unit Outline Dimensional Drawing

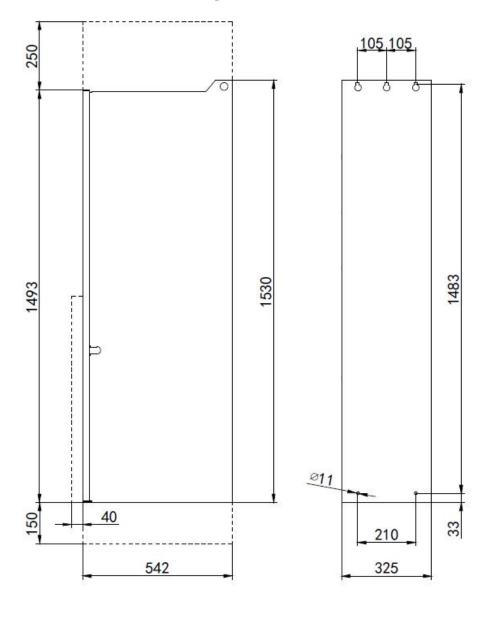
9.16 External Dimensions of EC754-4J Filtering Unit


The dashed line indicates the ventilation space that needs to be reserved.

Outline Dimensional Drawing of EC754-4J Filter Unit

9.17 External Dimensions of EC754-4G Rectifier Unit

The dashed line indicates the ventilation space that needs to be reserved.

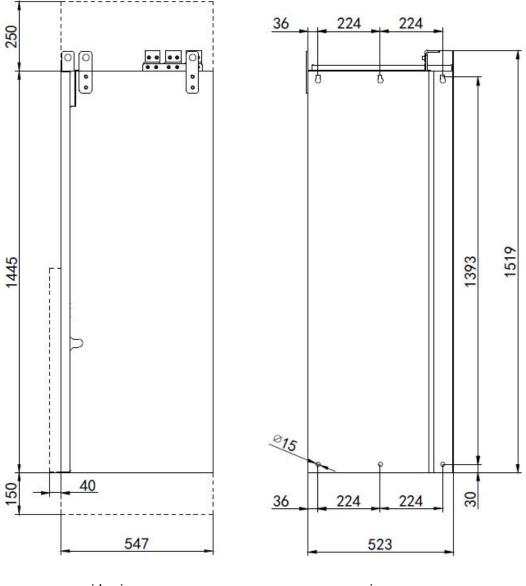


side view

Outline Dimensional Drawing of EC754-4G Rectifier Unit

9.18 External Dimensions of EC754-4H Rectifier Unit

The dashed line indicates the ventilation space that needs to be reserved.

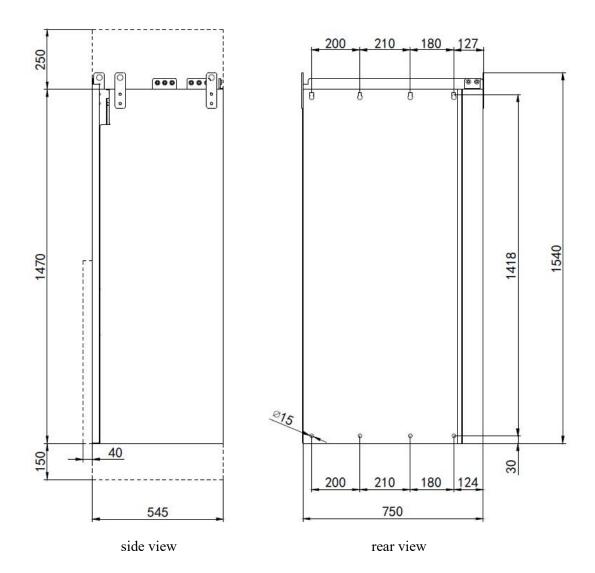

side view

rear view

Outline Dimensional Drawing of EC754-4H Rectifier Unit

9.19 External Dimensions of EC754-4I Rectifier Unit

The dashed line indicates the ventilation space that needs to be reserved.



side view

EC754-4I Rectifier Unit Outline Dimensional Drawing

9.20 External Dimensions of EC754-4J Rectifier Unit

The dashed line indicates the ventilation space that needs to be reserved.

EC754-4J Rectifier Unit Outline Dimensional Drawing

10. Our Technology

WISDRI (Wuhan) Automation Co., Ltd. has a high-quality R&D team that values basic theoretical research and practice, and goes deep into the bottom to design and innovate products. Through repeated practice of core algorithms and functions, high-level selection of components, modules, fans, and strict control and comprehensive testing of the production process, we ensure that users receive advanced and mature products and technologies.

11. Our Business

We can provide users with automation products, on-site debugging, system maintenance, design consulting, and system integration services.

12. Our Services

18 months of extended warranty period;

Fast and convenient backup service;

Free technical support hotline.

Standards and certifications

Thanks for your using!

Thanks for your using!

Service Hotline: 400-860-8070 Web address: www.wisdriauto.com Address: No. 9, Fenghuangyuan Road 1, East Lake Hightech DevelopmentZone, Wuhan, Hubei Province, China.